Skip to main content

PULMONARY-NODULES-SEGMENTATION

The Cancer Imaging Archive

Pulmonary-Nodules-Segmentation | Segmentation of Pulmonary Nodules in Computed Tomography Using a Regression Neural Network Approach and its Application to the Lung Image Database Consortium and Image Database Resource Initiative Dataset

DOI: 10.7937/K9/TCIA.2014.V7CVH1JO | Data Citation Required | 34 Views | Analysis Result

Cancer Types Location Subjects Related Collections Updated
Lung Lung 102 2015/02/24

Summary

We present new pulmonary nodule segmentation algorithms for computed tomography (CT). These include a fully–automated (FA) system, a semi-automated (SA) system, and a hybrid system. Like most traditional systems, the new FA system requires only a single user-supplied cue point. On the other hand, the SA system represents a new algorithm class requiring 8 user-supplied control points. This does increase the burden on the user, but we show that the resulting system is highly robust and can handle a variety of challenging cases. The proposed hybrid system starts with the FA system. If improved segmentation results are needed, the SA system is then deployed.

The FA segmentation engine has 2 free parameters, and the SA system has 3. These parameters are adaptively determined for each nodule in a search process guided by a regression neural network (RNN). The RNN uses a number of features computed for each candidate segmentation. We train and test our systems using the new Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) data. To the best of our knowledge, this is one of the first nodule-specific performance benchmarks using the new LIDC-IDRI dataset. We also compare the performance of the proposed methods with several previously reported results on the same data used by those other methods. Our results suggest that the proposed FA system improves upon the state-of-the-art, and the SA system offers a considerable boost over the FA system.

The download links provided below provide easy access to specific subsets of images from our study, which are described in much greater detail in our publication (https://doi.org/10.1016/j.media.2015.02.002).

Collections Used In This Analysis Result

Title Data Type Format Access Points Subjects Studies Series Images License
Corresponding Original CT Images from LIDC-IDRI c ontaining the 66 testing nodules that are delineated by all four board certified radiologists CT DICOM 61 61 61 13,573 CC BY 3.0
Corresponding Original CT Images from LIDC-IDRI containing the 77 LIDC testing nodules that are segmented by three, more radiologists CT DICOM 41 44 44 8,002 CC BY 3.0

Collections Used In This Analysis Result

Related Collections
Related Datasets
LIDC-IDRI
No related Analysis Results found: Submit your proposal!
Legend: Collections| Analysis Results

Citations & Data Usage Policy

Data Citation Required: Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution must include the following citation, including the Digital Object Identifier:

Data Citation

Messay T, Hardie RC,  Tuinstra TR. (2014). Segmentation of Pulmonary Nodules in Computed Tomography Using a Regression Neural Network Approach and its Application to the Lung Image Database Consortium and Image Database Resource Initiative Dataset (Pulmonary-Nodules-Segmentation). The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2014.V7CVH1JO

Related Publications

Publications by the Dataset Authors

The authors recommended the following as the best source of additional information about this dataset:

Publication Citation

Messay T, Hardie RC,  Tuinstra TR. (2015). Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset. Medical Image Analysis. Elsevier BV. https://doi.org/10.1016/j.media.2015.02.002

The Collection authors recommend these readings to give context to this dataset

Research Community Publications

TCIA maintains a list of publications that leveraged this dataset. If you have a manuscript you’d like to add please contact TCIA’s Helpdesk.

Additional Publications Related To This Work

The Collection authors recommend these readings to give context to this dataset

Publications Using This Data

TCIA maintains a list of publications that leveraged this dataset. If you have a manuscript you’d like to add please contact TCIA’s Helpdesk.

Publication Citation

Messay T, Hardie RC,  Tuinstra TR. (2015). Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset. Medical Image Analysis. Elsevier BV. https://doi.org/10.1016/j.media.2015.02.002