DICOM-LIDC-IDRI-Nodules | Standardized representation of the TCIA LIDC-IDRI annotations using DICOM
DOI: 10.7937/TCIA.2018.h7umfurq | Data Citation Required | 295 Views | 2 Citations | Analysis Result
Location | Subjects | Size | Updated | |||
---|---|---|---|---|---|---|
Lung | Chest | 875 | Tumor segmentations, image features, Software/Source Code | 2020/03/26 |
Summary
This dataset contains standardized DICOM representation of the annotations and characterizations collected by the LIDC/IDRI initiative, originally stored in XML and available in the TCIA LIDC-IDRI collection . Only the nodules that were deemed to be greater or equal to 3 mm in the largest planar dimensions have been annotated and characterized by the expert radiologists performing the annotations. Only those nodules are included in the present dataset. Conversion was enabled by the pylidc library (https://pylidc.github.io/) (parsing of XML, volumetric reconstruction of the nodule annotations, clustering of the annotations belonging to the same nodule, calculation of the volume, surface area and largest diameter of the nodules) and the dcmqi library (https://github.com/qiicr/dcmqi) (storing of the annotations into DICOM Segmentation objects, and storing of the characterizations and measurements into DICOM Structured Reporting objects). The script used for the conversion is available at https://github.com/qiicr/lidc2dicom. The details on the process of the conversion and the usage of the resulting objects are available in the citation (see Citations & Data Usage Policy section).
Data Access
Version 3: Updated 2020/03/26
What changed:
DICOM objects curated and added to the cancerimagingarchive.net
Title | Data Type | Format | Access Points | Subjects | License | |||
---|---|---|---|---|---|---|---|---|
Structured Reports and Segmentations | SEG, SR | DICOM | Download requires NBIA Data Retriever |
875 | 883 | 13,718 | 13,718 | CC BY 3.0 |
DSO Key | Other | CSV | CC BY 3.0 |
Additional Resources For This Dataset
The following external resources have been made available by the data submitters. These are not hosted or supported by TCIA, but may be useful to researchers utilizing this collection.
- pylidc library (https://pylidc.github.io/)
- dcmqi library (https://github.com/qiicr/dcmqi)
- The script used for the conversion is available at https://github.com/qiicr/lidc2dicom
Citations & Data Usage Policy
Data Citation Required: Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution must include the following citation, including the Digital Object Identifier:
Data Citation |
|
Fedorov, A., Hancock, M., Clunie, D., Brockhhausen, M., Bona, J., Kirby, J., Freymann, J., Aerts, H.J.W.L., Kikinis, R., Prior, F. (2018). Standardized representation of the TCIA LIDC-IDRI annotations using DICOM. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.2018.h7umfurq |
Data Citation |
|
Armato III, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., Zhao, B., Aberle, D. R., Henschke, C. I., Hoffman, E. A., Kazerooni, E. A., MacMahon, H., Van Beek, E. J. R., Yankelevitz, D., Biancardi, A. M., Bland, P. H., Brown, M. S., Engelmann, R. M., Laderach, G. E., Max, D., Pais, R. C. , Qing, D. P. Y. , Roberts, R. Y., Smith, A. R., Starkey, A., Batra, P., Caligiuri, P., Farooqi, A., Gladish, G. W., Jude, C. M., Munden, R. F., Petkovska, I., Quint, L. E., Schwartz, L. H., Sundaram, B., Dodd, L. E., Fenimore, C., Gur, D., Petrick, N., Freymann, J., Kirby, J., Hughes, B., Casteele, A. V., Gupte, S., Sallam, M., Heath, M. D., Kuhn, M. H., Dharaiya, E., Burns, R., Fryd, D. S., Salganicoff, M., Anand, V., Shreter, U., Vastagh, S., Croft, B. Y., Clarke, L. P. (2015). Data From LIDC-IDRI [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX |
Related Publications
Publications by the Dataset Authors
The authors recommended the following as the best source of additional information about this dataset:
Publication Citation |
|
Fedorov, A., Hancock, M., Clunie, D., Brochhausen, M., Bona, J., Kirby, J., Freymann, J, Pieper S, Aerts H.J.W.L., Kikinis, R., Prior, F. (2020) DICOM re‐encoding of volumetrically annotated Lung Imaging Database Consortium (LIDC) nodules. Medical Physics Dataset Article. https://doi.org/10.1002/mp.14445 |
Publication Citation |
|
Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Van Beeke EJ, Yankelevitz D, Biancardi AM, Bland PH, Brown MS, Engelmann RM, Laderach GE, Max D, Pais RC, Qing DP, Roberts RY, Smith AR, Starkey A, Batrah P, Caligiuri P, Farooqi A, Gladish GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Casteele AV, Gupte S, Sallamm M, Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft BY. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Medical Physics, 38: 915–931, 2011. DOI: https://doi.org/10.1118/1.3528204 |
Research Community Publications
TCIA maintains a list of publications that leveraged this dataset. If you have a manuscript you’d like to add please contact TCIA’s Helpdesk.
Previous Versions
Version 2: Updated 2019/05/14
What changed: DICOM SEG objects no longer encode empty slices to reduce object size. The coded terms used to describe the nodule annotations now use fewer non-standard (99QIICR) codes. SegmentLabel attribute is populated in the DICOM SEG objects to list nodule annotation name instead of “Nodule”, to help with readability
for the user.
Title | Data Type | Format | Access Points | Subjects | License | |||
---|---|---|---|---|---|---|---|---|
Structured Reports and Segmentations | SR, SEG | DICOM |
Version 1: Updated 2018/11/30
Note: Version 1 of this dataset is currently located in a shared Google Drive folder while undergoing verification. When testing is complete the Google Drive folder will be replaced by a different link to the final dataset.