Skip to main content

DICOM-LIDC-IDRI-NODULES

The Cancer Imaging Archive

DICOM-LIDC-IDRI-Nodules | Standardized representation of the TCIA LIDC-IDRI annotations using DICOM

DOI: 10.7937/TCIA.2018.h7umfurq | Data Citation Required | 62 Views | 2 Citations | Analysis Result

Cancer Types Location Subjects Related Collections Size Supporting Data Updated
Lung Chest 875 2.51GB Tumor segmentations, image features, Software/Source Code 2020/03/26

Summary

This dataset contains standardized DICOM representation of the annotations and characterizations collected by the LIDC/IDRI initiative, originally stored in XML and available in the TCIA LIDC-IDRI collection . Only the nodules that were deemed to be greater or equal to 3 mm in the largest planar dimensions have been annotated and characterized by the expert radiologists performing the annotations. Only those nodules are included in the present dataset.

Conversion was enabled by the pylidc library (https://pylidc.github.io/) (parsing of XML, volumetric reconstruction of the nodule annotations, clustering of the annotations belonging to the same nodule, calculation of the volume, surface area and largest diameter of the nodules) and the dcmqi library (https://github.com/qiicr/dcmqi) (storing of the annotations into DICOM Segmentation objects, and storing of the characterizations and measurements into DICOM Structured Reporting objects). The script used for the conversion is available at https://github.com/qiicr/lidc2dicom. The details on the process of the conversion and the usage of the resulting objects are available in the citation (see Citations & Data Usage Policy section).

Data Access

Version 3: Updated 2020/03/26

What changed:

DICOM objects curated and added to the cancerimagingarchive.net

Title Data Type Format Access Points Subjects Studies Series Images License
Structured Reports and Segmentations SEG, SR DICOM
Download requires NBIA Data Retriever
875 883 13,718 13,718 CC BY 3.0
DSO Key Other CSV CC BY 3.0

Collections Used In This Analysis Result

Related Collections
Related Datasets
LIDC-IDRI
No related Analysis Results found: Submit your proposal!
Legend: Collections| Analysis Results

Additional Resources For This Dataset

The following external resources have been made available by the data submitters.  These are not hosted or supported by TCIA, but may be useful to researchers utilizing this collection.

Citations & Data Usage Policy

Data Citation Required: Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution must include the following citation, including the Digital Object Identifier:

Data Citation

Fedorov, A., Hancock, M., Clunie, D., Brockhhausen, M., Bona, J., Kirby, J., Freymann, J., Aerts, H.J.W.L., Kikinis, R., Prior, F. (2018). Standardized representation of the TCIA LIDC-IDRI annotations using DICOM. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.2018.h7umfurq

Data Citation

Armato III, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., Zhao, B., Aberle, D. R., Henschke, C. I., Hoffman, E. A., Kazerooni, E. A., MacMahon, H., Van Beek, E. J. R., Yankelevitz, D., Biancardi, A. M., Bland, P. H., Brown, M. S., Engelmann, R. M., Laderach, G. E., Max, D., Pais, R. C. , Qing, D. P. Y. , Roberts, R. Y., Smith, A. R., Starkey, A., Batra, P., Caligiuri, P., Farooqi, A., Gladish, G. W., Jude, C. M., Munden, R. F., Petkovska, I., Quint, L. E., Schwartz, L. H., Sundaram, B., Dodd, L. E., Fenimore, C., Gur, D., Petrick, N., Freymann, J., Kirby, J., Hughes, B., Casteele, A. V., Gupte, S., Sallam, M., Heath, M. D., Kuhn, M. H., Dharaiya, E., Burns, R., Fryd, D. S., Salganicoff, M., Anand, V., Shreter, U., Vastagh, S., Croft, B. Y., Clarke, L. P. (2015). Data From LIDC-IDRI [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX

Related Publications

Publications by the Dataset Authors

The authors recommended the following as the best source of additional information about this dataset:

Publication Citation

Fedorov, A., Hancock, M., Clunie,  D., Brochhausen, M., Bona, J., Kirby, J., Freymann, J, Pieper S, Aerts H.J.W.L., Kikinis, R., Prior, F. (2020) DICOM re‐encoding of volumetrically annotated Lung Imaging Database Consortium (LIDC) nodules. Medical Physics Dataset Article. https://doi.org/10.1002/mp.14445

Publication Citation

Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Van Beeke EJ, Yankelevitz D, Biancardi AM, Bland PH, Brown MS, Engelmann RM, Laderach GE, Max D, Pais RC, Qing DP, Roberts RY, Smith AR, Starkey A, Batrah P, Caligiuri P, Farooqi A, Gladish GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Casteele AV, Gupte S, Sallamm M, Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft BY.  The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Medical Physics, 38: 915–931, 2011. DOI: https://doi.org/10.1118/1.3528204

The Collection authors recommend these readings to give context to this dataset

Research Community Publications

TCIA maintains a list of publications that leveraged this dataset. If you have a manuscript you’d like to add please contact TCIA’s Helpdesk.

Additional Publications Related To This Work

The Collection authors recommend these readings to give context to this dataset

Publications Using This Data

TCIA maintains a list of publications that leveraged this dataset. If you have a manuscript you’d like to add please contact TCIA’s Helpdesk.

Publication Citation

Fedorov, A., Hancock, M., Clunie,  D., Brochhausen, M., Bona, J., Kirby, J., Freymann, J, Pieper S, Aerts H.J.W.L., Kikinis, R., Prior, F. (2020) DICOM re‐encoding of volumetrically annotated Lung Imaging Database Consortium (LIDC) nodules. Medical Physics Dataset Article. https://doi.org/10.1002/mp.14445

Publication Citation

Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Van Beeke EJ, Yankelevitz D, Biancardi AM, Bland PH, Brown MS, Engelmann RM, Laderach GE, Max D, Pais RC, Qing DP, Roberts RY, Smith AR, Starkey A, Batrah P, Caligiuri P, Farooqi A, Gladish GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Casteele AV, Gupte S, Sallamm M, Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft BY.  The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Medical Physics, 38: 915–931, 2011. DOI: https://doi.org/10.1118/1.3528204

Previous Versions

Version 2: Updated 2019/05/14

What changed: DICOM SEG objects no longer encode empty slices to reduce object size. The coded terms used to describe the nodule annotations now use  fewer non-standard (99QIICR) codes. SegmentLabel attribute is populated in the DICOM SEG objects to list  nodule annotation name instead of “Nodule”, to help with readability
for the user.

Title Data Type Format Access Points Subjects Studies Series Images License
Structured Reports and Segmentations SR, SEG DICOM

Version 1: Updated 2018/11/30

Note: Version 1 of this dataset is currently located in a shared Google Drive folder while undergoing verification. When testing is complete the Google Drive folder will be replaced by a different link to the final dataset. 

Title Data Type Format Access Points Subjects Studies Series Images License
Structured Reports and Segmentations SR, SEG DICOM